IP reference

Referencia Técnica de Redes, Protocolos, Modelo OSI, TCP/IP, y otras tecnologías.

Posts Tagged ‘modelo OSI’

Subneteo (subnetting,subnet)

Posted by Luis R. en 2009/05/31

Subnetting es la técnica para crear múltiples redes lógicas dentro de una red Clase A, B ó C; sin esta herramienta sólo podríamos usar una red por cada red clase A, B o C, lo cual haría que desaprovecháramos los espacios de direcciones.

Cada enlace de datos en una red debe tener un identificador único de red, y cada nodo en ese enlace debe ser miembro de la misma red. Si dividimos una red mayor (Clase A, B o C) en redes más pequeñas, te permite crear una red que interconecta subredes. Cada enlace de datos en esta red tendría entonces un identificador de red o de sub-red único. Cualquier dispositivo o gateway que conecta n redes o subredes tiene n distintas direcciones IP, una por cada red o sub-red que interconecta.

Continúa leyendo en la nueva dirección del blog:

http://ipref.blogspot.com/2009/05/subneteo-subnettingsubnet.html

Anuncios

Posted in A-Bases, CCNA, Internetworking | Etiquetado: , , , , , , , , , , , | 1 Comment »

Cómo funciona una Red Privada Virtual (Virtual Private Network)

Posted by Luis R. en 2009/04/28

from:IPSec Negotiation/IKE Protocols/How Virtual Private Networks Work

El mundo ha cambiado últimamente y ya no sólo nos interesa tratar con asuntos locales o regionales, ahora muchas empresas tienen que lidiar con mercados y logística globales. Algunas empresas deciden hacerlo mediante presencia en todo su país, su continente, o incluso en todo el mundo; pero siempre hay algo que necesitan: comunicación segura, confiable y rápida, sin importar donde estén sus oficinas.

Hasta hace poco, comunicación confiable significaba tener enlaces dedicados para mantener redes WAN, que podían ir desde una línea ISDN (144Kbps) hasta un OC3 (Optical Carrier-3 a 155Mbp o también llamado STM1). Obviamente una red WAN tiene ventajas sobre una red pública, como Internet, en cuanto a confiabilidad, disponibilidad, performance, latencia, seguridad, etc.; pero mantener una red WAN, particularmente usando enlaces dedicados, se puede volver demasiado costoso, y dependiendo del tipo de servicio, puede que la distacia incremente ese costo aún más. Adicionalmente, las redes privadas no son la solución para una empresa que tiene usuarios con alta movilidad (como puede ser el personal de mercadeo), y que requiere conectarse a recursos corporativos para acceder a datos sensiblemente importantes o confidenciales.

Mientras crece la popularidad del internet, las empresas lo han utilizado como un medio para extender sus propias redes. Primero llegaron las intranets, sitios diseñados para el uso de los empleados únicamente. Ahora, muchas compañías tienen sus propias VPNs para dar solución a las necesidades de sus empleados y oficinas remotos.

Una red típica de VPN puede tener una red local (LAN) principal en el edificio corporativo, otras LANs en oficinas remotas y usuarios individuales que se conectan desde campo.
Una VPN es una red privada que usa una red pública (usualmente el internet) para conectar sitios remotos o usuarios. Y en lugar de usar enlaces dedicados, tales como una línea privada, usa conexiones “virtuales” enrutadas a través de internet desde la red privada de la compañía hasta el sitio remoto.

¿Qué hace una VPN?

Hay dos tipos comunes de VPN

  • Remote-Access: también llamada Virtual Private Dial-up Network (VPDN); es una conexión usuario-LAN usada por empresas que tienen empleados móviles que se conectan desde localidades remotas. Usualmente, las empresas que trabajan este esquema, también contratan un ISP que provea el servicio de Dial-up a sus empleados móviles, y podría incluso ser a través de un número gratuito para entrar a internet y comunicarse con la red corporativa a través de un cliente de VPN. Las redes VPN de Remote-Access permiten conexiones seguras y encriptadas entre la red privada de una empresa y los usuarios remotos a través de un proveedor de servicios.
  • Site-to-Site: A través del uso de equipo dedicado y encripción a gran escala, una empresa puede conectar múltiples sitios fijos sobre una red pública como Internet. Cada sitio requiere sólo una conexión local a la misma red pública; de ahí proviene el ahorro comparado con Líneas Privadas dedicadas. Las VPNs Site-to-Site se pueden clasificar como intranets(entre dos oficinas remotas de la  misma compañía) o extranets (si se construye la VPN entre oficinas de compañías distintas, ya sea un socio, cliente, proveedor, etc.)

Entre las ventajas de una Red Privada Virtual bien diseñada tenemos:

  • Conectividad extendida geográficamente
  • Costos de operación menores que en una WAN tradicional
  • Reduce los tiempos y costos de tránsito para usuarios remotos
  • Aumenta la productividad
  • Simplifica la topología de red
  • Provee oportunidades de trabajo en red globales
  • Hace posible el soporte a esos trabajadores remotos
  • Provee un retorno de inversión más rápido que una WAN tradicional

¿Qué características tiene una Red Privada Virtual bien diseñada? Debe incorporar al menos:

  • Seguridad (security)
  • Confiabilidad (reliability)
  • Escalabilidad (scalability)
  • Manejo de Red (network management)
  • Manejo de Políticas (policy management)

Analogía: cada LAN es una ISLA (each LAN is an isLANd)

Imagina que vive en una isla dentro de un enorme oceáno. Hay miles de islas alrededor, algunas muy cerca, otras muy lejos. La manera normal de viajar a ellas es tomar un ferry, y por tanto, significaría no tener casi ninguna privacidad; todo lo que haga puede ser visto por otros.

Pensemos en que cada isla es una LAN y el oceáno es la Internet. Cuando te conectas a un servidor web es similar a cuando viajas por ferry. No tienes control sobre los cables o routers que componen la internet, así como no tienes control de la gente en el ferry. Es así como tienes los detalles de seguridad por usar un medio público para conectar dos redes privadas.

Así que decides construir un puente entre tu isla y otra, para tener un medio más seguro y directo de viajar entre ellas. Claro que será más caro construir y mantener el puente, aún cuando sea un destino cercano; pero la necesidad de un medio confiable y seguro es grande, así que lo construyes. Quizás si quieres comunicarte a una isla más lejana será demasiado caro.

La situación es parecida a tener una línea privada. Los puentes (esas líneas privadas) están separadas del oceáno (Internet), aún pueden conectar las islas (LANs). Muchas compañiás han escogido esta ruta por la gran necesidad de seguridad y confiabilidad. Aún así, la gran distancia podría hacer prohibitivos los costos.

Así que, ¿cómo encaja una VPN en esta analogía?, le podríamos dar a cada habitante de nuestra isla un pequeño submarino con las siguientes propiedades:

  • Rápido
  • Fácil de llevar
  • Se puede esconder completamente de otros submarinos y barcos
  • Se puede depender de él
  • Es barato agregar submarinos a la flota que ya tienes

Aunque está viajando en el oceáno junto con otro tráfico, los habitantes de nuestras islas pueden viajar cuando quieran, con seguridad y privacía. Así funciona una VPN en esencia; cada miembro remoto de tu red puede comunicarse de manera segura a través de Internet hacia una LAN privada. Además, puede crecer la VPN para acomodar más usuarios o localidades de manera más sencilla que con enlaces dedicados. De hecho, la escalabilidad es una de las mayores ventajas de las VPNs sobre las líneas dedicadas, ya que la distancia geográfica no influye en los costos de la VPN.

Tecnologías VPN

Una VPN bien diseñada usa varios métodos para mantener el orden de la conexión y los datos seguros.

  • Confidencialidad de los datos: es quizás el servicio más importante que nos da cualquier implementación de VPN. Como tus datos privados viajan sobre un medio público, la confidencialidad es vital y puede ser obtenida por encriptación. En este proceso se codifican los datos de una manera que sólo la computadora de destino puede descifrar la información.

La mayoría de las VPN usan uno de estos protocolos de encriptación:

  1. IPsec– Internet Protocol security que nos da una seguridad mejorada con características tales como algoritmos de encriptación más fuertes y autenticación más comprensiva. IPsec tiene dos modos de encripción, túnel y transporte. El modo de túnel encripta el encabezado y la carga de cada paquete, mientras que el método de transporte sólo encripta la carga o contenido de los paquetes. Sólo sistemas que son compatibles con IPsec pueden usar este protocolo. También, todos los dispositivos deben usar una clave común o certificado y deben tener implementadas políticas de seguridad similares.
    Para usuarios de acceso remoto de VPN hay paquetes de software  que proveen encriptación y conexión en una PC. IPsec soporta encriptación de 56 bits (single DES) o 168 bits (triple-DES).
  2. PPTP/MPPE– PPTP fue creado en el foro PPTP, un consorcio que incluye a US Robotics, Microsoft, 3COM, Ascend y ECI Telematics. PPTP soporta VPNs multiprotocolo, con encriptación de 40 y 128 bits usando un protocolo llamado Microsoft Point-to-Point Encryption (MPPE). Es importante notar que PPTP por si mismos no provee encriptación.
  3. L2TP/IPsec– conocido como L2TP sobre IPsec, provee la seguridad del protocolo de IPsec sobre la solución de túnel de Layer 2 Tunneling Protocol. L2TP es el producto de la alianza entre miembros del foro PPTP, Cisco y la Internet Engineering Task Force (IETF). Usado principalmente para VPNs de acceso remoto con sistemas operativos Windows 2000, ya que Windows 2000 trae incorporado un cliente nativo de IPsec y L2TP. Los ISP (proveedores de servicio de Internet) también pueden ofrecer conexiones L2TP para usuarios de dial-up (conexión por módem analógico) y encriptar el tráfico con IPsec entre sus puntos de acceso y los servidores de red de las oficinas remotas.
  • Integridad de los datos– es imporante que tus datos estén encriptados sobre una red pública, y es igual de importante que no sean cambiados durante su tránsito. Por ejemplo, IPsec tiene un mecanismo para asegurar que la parte encriptada del paquete o el encabezado completo y los datos del paquete, no han sido alterados. Si se detecta alguna alteración, el paquete se descarta. La integridad de los datos también involucra autenticar el par remoto (remote peer).
  • Autenticación del origen de los datos– es extremadamente importante verificar la identidad de la fuente de los datos que se están enviando. Esto es para protegernos de una variedad de ataques que dependen de suplantar la identidad del transmisor (spoofing).
    Anti Replay- Es la habilidad de detectar y rechazar paquetes que son reproducidos o copiados, y sirve para evitar el spoofing.
  • Data Tunneling/Traffic Flow Confidentiality–  Tunneling es el proceso de encapsular un paquete completo dentro de otro paquete y enviarlo sobre una red. El tuneleo de datos es útil en casos donde es deseable esconder la identidad del dispositivo que origina el tráfico. Por ejemplo, un dispositivo único que encapsula tráfico que pertenece a un número de hosts detrás de él, y agrega su propio encabezado sobre los paquetes existentes. Encriptando el paquete original y su encabezado ( y ruteando el paquete basado en el encabezado capa 3 que se agregó encima), el dispositivo de tuneleo esconde efectivamente la fuente original del paquete. Sólo un par (peer) confiable es capaz de determinar la verdadera fuente, después desecha el encabezado adicional y desencripta el encabezado original. Como puede verse en el RFC 2401:

“…disclosure of the external characteristics of communication also can be a concern in some circumstances. Traffic flow confidentiality is the service that addresses this latter concern by concealing source and destination addresses, message length, or frequency of communication. In the IPsec context, using ESP in tunnel mode, especially at a security gateway, can provide some level of traffic flow confidentiality.”

“…La revelación de las características externas de comunicación también pueden ser una preocupación en ciertas circunstancias. La confidencialidad del flujo de tráfico es el servicio que resuelve esta preocupación ocultando las direcciones fuente y destino; longitud del mensaje, o la frecuencia de comunicación. En el contexto de IPsec, usar ESP en modo de túnel, especialmente en un gateway de seguridad, puede dar algún nivel de confidencialidad al flujo de tráfico.”

Todos los protocolos de encriptación listados aquí también usan tuneleo como un medio para transferir los datos encriptados a través de la red pública. Es importante notar que el tuneleo, por si mismo, no provee seguridad a los datos. El paquete original es encapsulado únicamente dentro de otro protocolo y podría aún ser visible con un dispositivo de captura de paquetes si no es encriptado. Sin embargo se menciona aquí porque es una parte integral de cómo funciona una VPN.

El tunneling requiere 3 protocolos diferentes:

  1. Passenger protocol– Datos originales a transportar (IPX, NetBeui, IP).
  2. Encapsulating protocol–  El protocolo que envolverá al paquete original.
  3. Carrier protocol– El protocolo usado por la red sobre el que la información viajará.

El paquete original (passenger protocol) es encapsulado dentro del protocolo de encapsulamiento, el cual es puesto dentro del encabezado del protocolo de carrier (usualmente IP) para mandarlo sobre la red pública. Debemos notar que el protocolo de encapsulamiento frecuentemente también lleva la encriptación de los datos. Protocolos como IPX y NetBeui, los cuales normalmente no serían transportados por la Internet, pueden ser transmitidos de manera segura.

Para VPNs site-to-site, el protocolo de encapsulamiento es usualmente IPsec o Generic Routing Encapsulation (GRE). GRE incluye información de que tipo de paquete estás encapsulando e información acerca de la conexión entre el servidor y el cliente.
Para VPNs de acceso remoto, el tunneling normalmente tiene lugar usando PPP (point to point protocol). Parte de la pila de TCP/IP, PPP es el transporte para otros protocolos de IP cuando se comunicam dos hosts sobre la red. PPP tunneling usará PPTP, L2TP o Layer 2 Forwarding (propietario de Cisco).

  • AAA– Authentication, authorization, and accounting; se usa para un acceso más seguro en una VPN de acceso remoto. Sin la autenticación de usuario cualquiera que tenga acceso a una computadora con un cliente de VPN preinstalado puede establecer una conexión segura a la red remota. Sin embargo, con la autenticación de usuario se le pedirán un nombre usuario y una contraseña válidos para completar la conexión. Los nomrbes de usuario y contraseñas peuden ser almacenados en el dispositivo terminador de VPNs, o en un servidor externo de AAA, el cual puede proveer autenticación a muchas otras bases de datos, tales como Windows NT, Novell, LDAP, y demás.

Cuando una petición para establecer un túnel viene de un cliente de dial-up, el dispositivo de VPN pregunta por un nombre de usuario y una contraseña. Éste puede ser autenticado localmente o enviado a un AAA server, el cual revisa:

  • Authentication ¿Quién eres?
  • Authorization ¿Qué te está permitido hacer?
  • Accounting ¿Qué es lo que estás haciendo?

La información de accounting es especialmente útil para seguir la actividad de un cliente para auditar la seguridad, cobrar los servicios usados o elaborar reportes.

  • Nonrepudiation– es una característica bastante deseable en ciertas transferencias de datos, especialmente las relacionadas con finanzas. Ayuda a prevenir situaciones donde un extremo niega haber tomado parte en una transacción. Así como un banco nos requiere la forma antes de pagar un cheque, nonrepudiation trabaja agregando una firma digital al mensaje enviado, así se adelanta a la posibilidad de que el transmisor niegue su participación en la transacción.

Hay varios protocolos que se pueden usar para contruir una solución deVPN y cada uno de ellos provee parte de los servicios que se listan en el documento. La elección de algún protocolo depende del juego de características deseado. Por ejemplo, una organización puede estar cómoda con la información transmitida en texto simple, pero extremadamente preocupada con la integridad de los datos, mientras que otra empresa podría encontrar que su confidencialidad es extremadamente esencial. Obviamente la elección de protocolos sería diferente. Para más información de los protocolos disponibles y sus fortalezas relativas puedes leer el documento de cisco: ¿Cuál solución de VPN es la correcta para ti? (inglés).

Productos de VPN (Cisco)

Basados en el tipo de VPN (remote-access o site-to-site) se necesitan ciertos componentes para construir tu red de VPN. Estos pueden incluir:

  • Software para cada host remoto que se requiera conectar
  • Hardware dedicado, como un concentrador de VPN o un Cisco Adaptive Security Appliance (ASA), un router con IOS features, un VPN router de Nortel (antes contivity), etc.
  • Servidor de VPN dedicado para los servicios de dial-in
  • Network Access Server (NAS) usado por los proveedores de servicios para el acceso de usuarios remotos de VPN.
  • Centro manejo de políticas y de red privada.

Muchas compañías han desarrollado soluciones llave en mano debido a que no hay un estándar ampliamente aceptado para implementar VPNs, por ejemplo, Cisco ofrece:

  • VPN Concentrator (fuera de ventas)
  • VPN enabled router (un 1841 security bundle por ejemplo)
  • Cisco ASA
  • Cisco VPN clients

Posted in Cisco docs, Security | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , | 6 Comments »

Ejemplo de Encapsulamiento (ilustración del datagrama)

Posted by Luis R. en 2009/04/20

Tomando el caso del ejemplo anterior, el datagrama será analizado en fragmentos de 8 bytes, indicando la longitud de cada campo; recordemos que es un paquete de ICMP encapsulado en IP.

Del byte 0 al 7:

y tenemos la siguiente información de sus campos:

IHL: Especifica la longitud del encabezado de IP en palabras de 32 bits (4 Bytes) y el valor mínimo es 5.

TOS: Type of service, 8 bits, especifica los parámetros para el tipo de servicio solicitado. Los parámetros pueden ser utilizados por las redes para defini el manejo del datagrama durante el transporte. El bit M fue agregado en el RFC 1349.

Total Lenght: es la longitud total del datagrama, en este caso es  0x003C (60 bytes).

Identification: Usado para indentificar fragmentos de un datagrama deaquellos de otro. El módulo de protocolo que origina al datagrama fija el valor del campo de identificación  a un valor que debe ser único para el par de Fuente-Destino y protocolo por todo el tiempo que el datagrama estará activo en el sistema de red. El módulo de protocolo de origen de un datagrama completo pone los bits MF y el Fragment Offset a cero.

Fragment Offset, 13 bits: usado para dirigir el reensamblado de un datagrama fragmentado. En este caso es cero porque no hay más fragmentos.

Del byte 8 al 15:

TTL: Time to live, es un temporizador para llevar un control del tiempo de vida del datagrama. Cuando el TTL es decrementado a cero, el datagrama es desechado.

Protocol: este campo especifica el protocolo encapsulado, en este caso el valor es 1, lo que nos indica que se trata de un paquete de ICMP (ping). Consulta los valores en la tabla (click aquí).

Header Checksum: 16 bits de la suma de verificación del encabezado de IP y las opciones IP.

Source IP Address: Es la dirección IP del transmisor, en este caso 192.168.1.1 (0xC0.A8.01.01).

Del byte 16 al 27:

Destination IP Address: es la dirección IP del destino, en este caso 192.168.1.17 (0xC0.A8.01.11).

C, Class y Option: en este caso indican (tabla de valores):

  • 0x0: no copiar
  • 0x00: mensaje de control
  • 0x1000: solicitud de Echo (RFC 792, Summary of Message Types, 8  Echo).

Padding: es de longitud variable y sirve como relleno para asegurar que los datos comienzan tras de una frontera de 32 bits después de la dirección de destino.

Aquí es importante destacar que al tratarse de un mensaje de control (ICMP) se utilizan los bytes del 20 al 27 para información de control; y se usan de la siguiente manera (RFC792):

    20                  21                  22                  23
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |     Code      |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Identifier          |        Sequence Number        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Data ...

   +-+-+-+-+-

De aquí obtenemos que:

  • byte 20, es un paquete tipo 8 (echo request)
  • byte 21, siempre va a cero
  • byte 22 y 23, es el checksum de ICMP
  • bytes 24 y 25, si el byte 21=0 el identificador ayuda a hacer match entre las solicitudes y las respuestas de eco; puede ser 0 o puede usarse para identificar una sesión.
  • bytes 26 y 27 son para llevar la secuencia de las solicitudes de eco, y quien responde debe usar el mismo número; la secuencia debe incrementarse con cada nueva solicitud (en una instrucción típica de ping se envían 4 paquetes, y pueden enviarse cuantos se desee).

Bytes del 28 al 59 (32 bytes)

Son los datos de relleno que se colocaron dentro del mensaje de Echo, y se trata de una secuencia, del 0x61 al 0x77, y se vuelve a comenzar. Cuando se responde la solicitud de eco se debe incluir exactamente la misma información en el campo de datos.

Posted in CCNA, Cisco docs | Etiquetado: , , , , , , , , , , , , , , | 2 Comments »

Ejemplo de Encapsulamiento

Posted by Luis R. en 2009/04/01

Para comenzar, la dirección de origen usada 192.168.1.1 se escribe así en hexadecimal: C0 A8 01 01

Cuando escribimos el comando:

C:\>ping 192.168.1.1

Este es el paquete de Ping (74 Bytes)como aparece en la red Ethernet, y cada par de números representa un byte (8 bits) de información dentro del frame o paquete:

000000: 00 A0 CC 63 08 1B 00 40 : 95 49 03 5F 08 00 45 00 …c…@.I._..E.
000010: 00 3C 82 47 00 00 20 01 : 94 C9 C0 A8 01 01 C0 A8 .<.G.. ...... .. 000020: 01 11 08 00 48 5C 01 00 : 04 00 61 62 63 64 65 66 .@..H\....abcdef 000030: 67 68 69 6A 6B 6C 6D 6E : 6F 70 71 72 73 74 75 76 ghijklmnopqrstuv 000040: 77 61 62 63 64 65 66 67 : 68 69 wabcdefghi...... [/sourcecode] donde tenemos que los primeros 14 bytes componen el encabezado Ethernet, y son:

  • 00 A0 CC 63 08 1B la dirección MAC de destino
  • 00 40 95 49 03 5F la dirección MAC de origen
  • 08 00 el campo Tipo de Ethernet (0x0800 IP Datagram)

sigue el datagrama de IP (60 Bytes), que ya sin el encapsulado de Ethernet nos queda así:

000000: 45 00 00 3C 82 47 00 00 : 20 01 94 C9 C0 A8 01 01 E..<.G.. ...... 000010: C0 A8 01 11 08 00 48 5C : 01 00 04 00 61 62 63 64 ...@..H\....abcd 000020: 65 66 67 68 69 6A 6B 6C : 6D 6E 6F 70 71 72 73 74 efghijklmnopqrst 000030: 75 76 77 61 62 63 64 65 : 66 67 68 69 uvwabcdefghi...... [/sourcecode] y comienza con un valor 0x4500, el 4 indica que es un paquete de IPv4 y el 5 que el encabezado de IP tiene una longitud de 5 palabras de 32 bits; es decir, 160 bits o 20 bytes.

tenemos una dirección de origen 192.168.1.1 (C0 A8 01 01)
y una dirección de destino 192.168.1.17 (C0 A8 01 11)

y nos quedan 40 bytes de datos IP, que en este caso son de una solicitud de eco (ICMP Echo Request), incluyendo 32 bytes de datos (longitud por default para un paquete de ping).

Este post es un complemento al anterior:

https://ipref.wordpress.com/2008/06/03/encapsulamiento/

y posteriormente pondré una descripción detallada de cada uno de los números presentes en el frame de ejemplo.

Posted in CCNA, Cisco docs | Etiquetado: , , , , , , , , | 1 Comment »

Movilidad IPv6

Posted by Luis R. en 2009/03/18

del documento de cisco: IPv6 Mobility At-a-Glance

Los objetivos de la movilidad de IPv6 son:

  • no estar limitado a una ubicación
  • tener siempre conectividad IP
  • que sea independiente del transporte
  • conexiones en roaming robustas
  • movilidad de las aplicaciones
  • continuidad de las aplicaciones
  • que un server pueda ser un dispositivo móvil

Mobile IPv6 (MIPv6) se define en:

  • RFC 3775: Mobility Support in IPv6
  • RFC 3776: Using IPSec to Protect Mobile IPv6 Signalling between Mobile Nodes and Home Agents

Existen los mismos componentes básicos en MIPv6 como en MIPv4, excepto que no hay agentes externos en MIPv6.

figura 1 Lee el resto de esta entrada »

Posted in Cisco docs | Etiquetado: , , , , , , , , , , , , , , , , , , , | Leave a Comment »

Encabezado IPv6

Posted by Luis R. en 2009/02/20

Del documento de Cisco IPv6 Headers

Hay varios cambios al formato de encabezados de IPv6. Los diagramas describen en alto nivel la comparación entre IPv4 e IPv6.

IPv6 Headers

IPv6 Headers

Lee el resto de esta entrada »

Posted in Cisco docs | Etiquetado: , , , , , , , , , | Leave a Comment »

VoIP

Posted by Luis R. en 2008/12/15

La Voz sobre IP se refiere a la transmisión de llamadas telefónicas sobre el protocolo IP, ésto sin importar que tipo de equipo tradicional, computadoras o equipo dedicado tome parte en el proceso, o incluso sin importar si la llamada es transportada en su totalidad por IP o no.

La VoIP es uno de los desarrollos tecnológicos que más rápido se han adoptado por las compañías. Una de las razones principales es que hace más fácil integrar todo tipo de comunicaciones, de medios de comunicación y de dispositivos y medios de transmisión. Así, un usuario puede estar en comunicación constante, sin importar su ubicación, en tiempo real; y es el primer paso hacia las comunicaciones unificadas. Esta disponibilidad reduce costos y aumenta la productividad de un empleado.

La VoIP comenzó en 1995, cuando Vocaltech lanzó su primer teléfono para internet; previo a ese hecho, todo lo que se refería a VoIP era hehco por investigadores, pero desde que se probó que no sólo es técnicamente factible, sino comercialmente viable, muchas compañías han entrado al mercado de la VoIP tratando de tomar la ventaja, lo cual ha fomentado el desarrollo y competencia necesarias para abaratar los costos.

Cómo trabaja la VoIP

La configuración más básica es cuando un usuario ya cuenta con una computadora que tiene capacidad de audio (sound card), así, el usuario puede iniciar y terminar llamadas a través de un software llamado Softphone. Hay una gran variedad de opciones disponibles, algunos incluso totalmente gratuitos.

Este escenario es de telefonía IP pura, y se beneficia de los demás servicios de internet, como el e-mail y la mensajería instantánea.

También existe el escenario donde mezclamos servicios de VoIP con la telefonía tradicional y conectamos a través de un Gateway de voz las líneas” normales”. El Gateway de voz hace la conversión de paquetes de IP (transportados en UDP generalmente) hacia la telefonía basada en TDM (time division multiplexing).

Es importante este punto, porque las redes IP trabajan con conmutación de paquetes, es decir, cada paquete es enviado a su destino a través de múltiples circuitos que se comparten entre paquetes de distintos orígenes y con distintos destinos, así como múltiples protocolos o aplicaciones. En el caso de los circuitos conmutados (TDM) el canal se establece físicamente y es usado mientras la llamada está activa, y sólo es ocupado por la aplicación que lo genera; es el caso de la transmisión de datos por ISDN por ejemplo, o de una simple llamada de voz.

VoIP to PSTN

VoIP to PSTN

Entendiendo ésto, tenemos que: se inicia la llamada por el softphone, que usando SIP o H.323 o algún otro protocolo de señalización, se comunicará con el gateway de voz (un router, un IP-PBX, un servidor SIP, etc) y le hará una petición de inicio de llamada; el gateway verificará que puede entregar el servicio hacia la PSTN, y responderá positivamente al IP-phone y se iniciará la comunicación; aquí, la voz se convierte en paquetes de IP con un protocolo (G.729 por ejemplo) que se transportan en datagramas de UDP (encapsulamiento), y se entregarán al gateway, que los decodificará y traducirá a una señal analógica o digital, según el acceso a la PSTN, para poder hacer uso de una línea TDM tradicional.

También tenemos el caso donde tenemos dos gateways de voz, y se inicia la llamada desde un teléfono normal hacia un gateway, y éste a su vez hace el transporte hacia el gateway remoto a través de internet; una vez que el gateway remoto tiene la llamada, la decodifica y la entrega a la PSTN nuevamente, con lo que tenemos un ahorro en las largas distancias. Este caso es muy común en ambientes corporativos donde el volumen de llamdas justifica el uso de enlaces privados o públicos para hacer el transporte de voz y datos.

Los beneficios de la VoIP son que se incrementa la movilidad y la flexibilidad; así como una integración de la voz y los datos, y una reducción de costos para el usuario final.

Posted in Internetworking | Etiquetado: , , , , , , , , , | Leave a Comment »

El modelo jerárquico de 3 capas de Cisco

Posted by Luis R. en 2008/11/28

La jerarquía tiene muchos beneficios en el diseño de las redes y nos ayuda a hacerlas más predecibles. En si, definimos funciones dentro de cada capa, ya que las redes grandes pueden ser extremadamente complejas e incluir múltiples protocolos y tecnologías; así, el modelo nos ayuda a tener un modelo fácilmente entendible de una red y por tanto a decidir una manera apropiada de aplicar una configuración.

Ciscos Hierarchical Model

Cisco's Hierarchical Model

Entre las ventajas que tenemos de separar las redes en 3 niveles tenemos que es más fácil diseñar, implementar, mantener y escalar la red, además de que la hace más confiable, con una mejor relación costo/beneficio. Cada capa tiene funciones específicas asignadas y no se refiere necesariamente a una separación física, sino lógica; así que podemos tener distintos dispositivos en una sola capa o un dispositivo haciendo las funciones de más de una de las capas.

Las capas y sus funciones típicas son:

  • La capa de Acceso (access layer): Conmutación (switching); controla a los usuarios y el acceso de grupos de trabajo (workgroup access) o los recursos de internetwork, y a veces se le llama desktop layer. Los recursos más utilizados por los usuarios deben ser ubicados localmente, pero el tráfico de servicios remotos es manejado aquí, y entre sus funciones están la continuación de control de acceso y políticas, creación de dominios de colisión separados (segmentación), conectividad de grupos de trabajo en la capa de distribución (workgroup connectivity). En esta capa se lleva a cabo la conmutación Ethernet (Ethernet switching), DDR y ruteo estático (el dinámico es parte de la capa de distribución). Es importante considerar que no tienen que ser routers separados los que efectúan estas funciones de diferentes capas, podrían ser incluso varios dispositivos por capa o un dispositivo haciendo funciones de varias capas.
  • La capa de Distribución (distribution layer): Enrutamiento (routing); también a veces se llama workgroup layer, y es el medio de comunicación entre la capa de acceso y el Core. Las funciones de esta capa son proveer ruteo, filtrado, acceso a la red WAN y determinar que paquetes deben llegar al Core. Además, determina cuál es la manera más rápida de responder a los requerimientos de red, por ejemplo, cómo traer un archivo desde un servidor.
    Aquí además se implementan las políticas de red, por ejemplo: ruteo, access-list, filtrado de paquetes, cola de espera (queuing), se implementa la seguridad y políticas de red (traducciones NAT y firewalls), la redistribución entre protocolos de ruteo (incluyendo rutas estáticas), ruteo entre VLANs y otras funciones de grupo de trabajo, se definen dominios de broadcast y multicast.
    Debemos evitar que se hagan funciones en esta capa que son exclusivas de otras capas.
  • La capa de Núcleo (core layer): Backbone; es literalmente el núcleo de la red, su única función es switchear tráfico tan rápido como sea posible y se encarga de llevar grandes cantidades de tráfico de manera confiable y veloz, por lo que la latencia y la velocidad son factores importantes en esta capa. El tráfico que transporta es común a la mayoría de los usuarios, pero el tráfico se procesa en la capa de distribución que a su vez envía las solicitudes al core si es necesario. EN caso de falla se afecta a todos los usuarios, por lo que la tolerancia a fallas es importante.
    Además, dada la importancia de la velocidad, no hace funciones que puedan aumentar la latencia, como access-list, ruteo interVLAN, filtrado de paquetes, ni tampoco workgroup access. Se debe evitar a toda costa aumentar el número de dispositivos en el Core (no agregar routers), si la capacidad del Core es insufuciente, debemos considerar aumentos a la plataforma actual (upgrades) antes que expansiones con equipo nuevo.
    Debemos diseñar el Core para una alta confiabilidad (high reliability), por ejemplo con tecnologías de Data Link (capa 2) que faciliten redundancia y velocidad, como FDDI, Fast Ethernet (con enlaces redundantes), ATM, etc, y seleccionamos todo el diseño con la velocidad en mente, procurando la latencia más baja, y considerando protocolos con tiempos de convergencia más bajos.

Posted in A-Bases, CCNA, Cisco docs, Internetworking | Etiquetado: , , , , , , , | 24 Comments »

Ethernet en la Capa Física

Posted by Luis R. en 2008/11/21

Ethernet fue implementado por Digital, Intel y Xerox, quienes crearon e implementaron las primeras especificaciones LAN para Ethernet en las que se basó la IEEE para crear su comité 802.3; ésta era una red de 10Mbps que funcionaba sobre cable coaxial y eventualmente sobre par trenzado y sobre fibra.

Posteriormente la IEEE extendió su comité 802.3 a dos nuevos comités, 802.3u (Fast Ethernet) y 802.3ab (Gigabit Ethernet en categoría 5) y finalmente 802.3ae (10Gbps sobre fibra y coaxial).

Es  de suma importancia entender las diferencias entre los medios que se utilizan para Ethernet, ya que los costos no son los mismos, y posiblemente pensemos en implementar 10Gbps pero la diferencia de inversión lo haría muy difícil; pero entendiendo los diferentes medios de transmisión disponibles, se puede llegar a una solución que mezcle distintas opciones y que funcione muy bien y que sea de una excelente relación costo/beneficio.

ethernet

ethernet

La EIA/TIA (Electronic Industries Association y la nueva Telecommunications Industry Alliance) son los organismos que crearon el cuerpo del standard de Ethernet para la capa física. La EIA/TIA especifica que Ethernet use un conector registrado (registred jack RJ) con una secuencia de cableado 4 5 sobre par trenzado sin blindaje (unshielded twisted-pair UTP) que resulta ser el RJ45.

Cada tipo de cable Ethernet que está especificado por la EIA/TIA tiene una atenuación intrínseca del medio, es decir, la pérdida de la fuerza de la señal que se tiene cuando la señal pasa por el medio y que es medida en decibeles (dB). El mercado mide esta atenuación en categorías y entre mayor es la calidad del cable, mayor es la categoría y por tanto, menor es la atenuación. Por ejemplo, la categoría 5 tiene más vueltas (en el trenzado) que la categoría 3 y por tanto tiene menor interferencia por inducción (crosstalk).

Algunos de los estándares originales de la IEEE 802.3 son:

10Base2 10Mbps en banda base, hasta 185mt de distancia entre nodos, también conocido como thinnet y soporta 30 nodos por segmento. Usa un bus lógico y físico con conectores AUI; el 2 significa casi 200m. Usa tarjetas Ethernet con conectores BNC (British Naval Connector, Bayonet Neill Concelman o Bayonet Nut Connector) y conectores T para conectarse a la red.

10Base5 10Mbps,en banda base (baseband) y hasta 500m de distancia. Se conocía como thicknet, usa una topología lógica y física de bus con conectores AUI, hasta 2500m con repetidores y 1024 usuarios por segmento.

10BaseT usando cableado categoría3. Se conecta a través de un hub o un switch, sólo un host por segmento de cableado, usa conectores RJ45 con topología en estrella y un bus lógico.

Cada estándar 802.3 define una unidad de acoplamiento (conector Attachment Unit Interface) que permite una transferencia de un bit a la vez hacia la capa física desde el método de acceso (MAC) de la capa de enlace de datos (Data Link Layer). Ésto permite que MAC permanezca sin cambios, mientras que la capa física puede irse actualizando para utilizar nuevas tecnologías. El conector AUI original era un conector de 15 pines, pero que no soporta los 100Mbps por las altas frecuencias involucradas. Así que 100BaseT necesitó una nueva interfase y en el IEEE 802.3u se creó una llamado Media Independent Interfase (MII) que tiene un throughput de 100Mbps, y utiliza un nibble definido de 4bits, y el Gigabit Ethernet MII transmite 8 bits a la vez.

802.3u (fast ethernet) es compatible con 802.3 porque comparten las mismas características físicas. Fast Ethernet y Ethernet usan la misma unidad máxima de transmisión (MTU), usan los mismos mecanismos MAC (de acceso al medio),y preservan el formato de frame (descrito en el post anterior) que es usado por 10BaseT Ethernet. Básicamente, fast ethernet es sólo una actualización del estándar 802.3 original, sólo que 10 veces más rápido.

Algunos estándares extendidos de 802.3:

100BaseTX (IEEE 802.3u) cableado categoría 5, 6 o 7 de la EIA/TIA sobre par trenzado. un host por segmento de cableado, hasta 100m de distancia, conectores RJ45 con topología lógica de bus y física de estrella.

100BaseFX (IEEE 802.3u) usa cableado de fibra multimodo de 62.5/125 micrones. Topología punto a punto, hasta 412m de distancia, conectores ST o SC.

1000BaseCX (IEEE 802.3z) par trenzado de cobre llamado twinax (un par de coaxiales balanceados) que sólo llegan a los 25m.

1000BaseT (IEEE 802.3ab) Categoría 5, cuatro pares de UTP y hasta 100m.

1000BaseSX (IEEE 802.3z) MMF con núcleo de 62.5 y 50 micrones, usa un LASER de 850nm (nanómetros) y puede llegar a los 220m con la fibra de 62.5 micrones y 550m con la fibra de 50 micrones.

1000BaseLX (IEEE 802.3z) Fibra mono-modo, que usa núcleo de 9 micrones y lásers de 1300 nanómetros que puede alcanzar distancias desde 3km hasta 10kilómetros.

La fibra óptica es inmune a la interferencia Electromagnética (EMI).

Posted in CCNA | Etiquetado: , , , , , , , , , | 1 Comment »

Data Link Layer, el hardware.

Posted by Luis R. en 2008/09/21

En la capa de enlace de datos operan los switches y los bridges, y son hardware de aplicación específica ya que usan procesadores y circuitos que son diseñados únicamente para esta tarea. (application-specific integrated cirtuit), y es lo que permite que los switches alcancen velocidades de proceso de Gigabits con latencias muy bajas.

Menciono brevemente los dispositivos en una entrada previa:

https://ipref.wordpress.com/2008/06/05/dispositivos-de-red-capa-de-enlace-de-datos/

El proceso es el siguiente:

El switch recibe un frame y lee su encabezado, determina su origen y lo pone en su tabla para recordar de que puerto provino; entonces, busca el destino en esa misma tabla y envía el frame hacia el puerto asociado a esa dirección MAC; en caso de desconocer el destino, el frame es enviado a todos los puertos excepto al de origen, y cuando reciba un nuevo frame con esa dirección MAC de origen, sabrá de que puerto proviene, y la agregará a su tabla, por lo que conocerá donde está ubicado ese host. Así van formando su tabla de MAC addresses que ayuda a disminuir el tráfico en la red y a formar un mapa de la misma. Todos los dispositivos que reciben este mensaje están en un dominio de Broadcast, y si tenemos muchos mensajes de broadcast, afectarán el desempeño de la red.

Lee el resto de esta entrada »

Posted in A-Bases, CCNA, Cisco docs, Internetworking | Etiquetado: , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments »